If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8u^2+10u-12=0
a = 8; b = 10; c = -12;
Δ = b2-4ac
Δ = 102-4·8·(-12)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-22}{2*8}=\frac{-32}{16} =-2 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+22}{2*8}=\frac{12}{16} =3/4 $
| -46=8-3a | | 40/k=8 | | 36/j=9 | | 1.07n=5.35 | | 32-j=5 | | 1.07x=5.35 | | 8y+22=70 | | 3(2m+1)-3m=-2+18 | | 12=b180 | | 6-x-3=4x-12 | | F=1.5h-4.3 | | 1=b/8+2 | | (0.1+65)+(0.3x+31)=180 | | 18x-28+15x+14+15x-29+13x+7+11x+56+15x+4=720 | | 47=3x+16 | | 11×(x-5)+5×(x-4)=-187 | | 14=0.5p | | 3(n+2)2=81 | | 26=10+2x | | 27y-12=360 | | n-24=11 | | x+4=(5)/(x-4) | | y=-3(0)-7 | | 9a+7a+a=9-26 | | -2x-2=2x+4 | | 5+4(n+5)=33 | | 7=-20+3x | | -8(x+2)-2=-12(8-11) | | 5/6t4=2-1/6t | | -2x+5x-30=6 | | 6-9x=69 | | F(x)=2x^2-7x+5 |